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Climate scenarios used by the climate panel IPPC reveal a possible future climate, which is not
meant to be used as a climate prediction. However, such scenarios are misused frequently
to determine policy and strategy, for instance infrastructure, water management and energy
facilities. On 15 March 2010, Jason Frank, researcher at the Centrum Wiskunde & Informatica,
was appointed full professor Dynamical Systems and Numerical Analysis at the University of
Amsterdam. In his inaugural lecture, delivered on 21 April 2011, he gives a mathematical
view on the predictability of natural systems, such as the climate system, and looks at the
challenges, techniques and the role of computational methods.

“The IPCC climate simulations are far from
being predictions.” That is the quote from
this inaugural lecture that appeared on the
University of Amsterdam web site along with
the announcement of the lecture. I had been
asked to provide a provocative quote for the
announcement. The idea that the Intergov-
ernmental Panel on Climate Change bases its
findings on climate projections, and not cli-
mate predictions, is not original, but one that
has been expressed by one of the world’s fore-
most climate scientists and lead writers of the
IPCC reports, to whom we will return later in
the lecture.

The quote above suggests a tone of skepti-
cism, and the sensitive nature of this subject
was immediately confirmed when, prompt-
ed by the quote on the UvA website, a con-
cerned citizen sent me an angry e-mail, ac-
cusing me of having no conscience, and sug-
gesting that the statements I was planning
to make could be used by policymakers as
an excuse for inaction in the face of impend-
ing climate change. (To be honest, I had, at
that moment, written no more of this speech
than the first line, and hence found it ironic
that my correspondent seemed to know what
statements I was planning to make.)

The IPCC has recently come under fire in
the Netherlands, among other sources in the
book De staat van het klimaat: een koele blik
in een verhit debat, written by science journal-
ist Marcel Crok [1]. At the end of his book, Crok
argues that the proximity of science and poli-
tics in the climate issue is a detriment to ob-
jective science. Every scientific statement be-
comes politically loaded. My correspondent
was concerned that any discussion of uncer-
tainty in science would undermine science as
a whole, increasing public mistrust of science.
I wholeheartedly disagree. Misleading the
public into thinking that science is free of un-
certainty causes the public to mistrust science
when its ‘predictions’ fail.

This lecture in no way calls into question
the IPCC case on greenhouse gas forcing of
climate. The IPCC case is based on broad evi-
dence from a variety of sources, not just sim-
ulations. The simulations have a particular
role, and the IPCC clearly communicates what
that role is. Instead my goal here is to attempt
to explain to you how mathematicians look at
prediction, and to point out where challenges
lie for scientists for improving climate predic-
tion. A number of such challenges are already
being taken up in the coming IPCC report.

How predictable is nature? On the NASA
Eclipse website [9] one can see a table list-
ing all solar eclipses that will occur until the
year 3000. For example, according to the cat-
alog, on New Years Eve 2996, at 12:58:17pm a
total eclipse will occur at 33�S latitude and
6�E longitude, having a path width of 86 km.
I expect it will be spectacular.

It may or may not surprise you that NASA
is able to predict this eclipse so accurately.
In this lecture I will explain how predictions
of natural systems are made, and make some
comments on the limitations of predictability.
I will explain the nature of prediction in the
context of the solar system (which is relatively
simple), and then I will explain the prediction
of nature in the context of the climate.

The nature of prediction ...

Historically, the attempt to understand the
motion of planets and other heavenly bod-
ies was one of the driving forces behind the
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Figure 1 Kepler’s second law of planetary motion. The line

between the sun and an orbiting planet sweeps out equal

areas in equal time.
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development of formal mathematics, along
with commerce, surveying and architecture.
Whereas the latter three were practical neces-
sities, astronomy was a pure science in the
sense that it was curiosity-driven and highly
theoretical. It led to calculus and the branch
of mathematics known as analysis. Johannes
Kepler published the laws of planetary motion
in 1609. By peering at the meticulous astro-
nomical data of Brahe, Kepler had discovered
that the planetary orbits were elliptical, and
his second law, interpreted graphically in Fig-
ure 1, states that the line between a planet
and the sun sweeps out an equal amount of
area in equal periods of time: this implies
that the planet speeds up when nearer the
sun and slows down when farther away from
it.

Kepler’s observation that the planetary or-
bits were elliptical inspired Isaac Newton to
devise the theory of gravitation. Newton pro-
posed the laws of mechanics, which have
three important consequences for the predic-
tion of planetary motion: (1) a planet moves
in a straight line unless acted upon by gravity,
(2) the gravitational force effects a change in
the velocity vector of a planet, (3) the grav-
itational force between any two bodies acts
along the line between them and is inversely
proportional to the square of their separation.

Differential equations, numerical integrators
In Figure 2 you see three computer simula-
tions of the giant outer planets of the solar
system — Jupiter, Saturn, Uranus and Nep-
tune — and Pluto, which used to be a planet
until astronomers demoted it in 2006. The

simulations were computed using three dif-
ferent numerical methods, A, B, and C, which
I will describe in a moment. Just like the por-
ridge in the English story of Goldilocks and the
Three Bears, Method A is ‘too hot’, Method B
is ‘too cold’, and Method C is ‘just right’. For
the hot Method A the planetary orbits gradual-
ly grow in time, and the planets leave the solar
system. If one looks closely one will see that
Jupiter and Saturn nearly collide at the begin-
ning of this simulation, which also throws the
orbits off considerably. For the cold Method B
the planetary orbits gradually converge upon
the sun. When they get too close, they are
slingshot off into space. Meanwhile, for the
just-right Method C, the orbits are nicely peri-
odic, corresponding to what we might expect
after centuries of observations.

The prediction problem for the solar sys-
tem is the following: Given the mathematical
laws (in this case, Newton’s equations) de-
scribing the motion of the planets, and suf-
ficient information about their current state,
determine their state at some future time
T . For a single planet, Newton’s equations
amount to six equations: three for the posi-
tion in three-dimensional space, and three to
specify its velocity vector. For the solar sys-
tem, including the sun, this corresponds to
sixty equations. And depending on what we
want to know about the planets, we may have
to throw in a moon or an asteroid or two, at
a rate of six equations each. The solution to
such a problem would be sixty-plus functions
of time, that specify the positions and veloc-
ities of all bodies in the solar system for all
time. But we do not know how to solve that

problem, nor does anyone believe it is pos-
sible. Fortunately, mathematics tells us that
we can solve the equations approximately if
the time T is very small. Since T is general-
ly not small, we divide up the period of time
between 0 and T into a large number N of
tiny time periods 0, t1, t2, ..., tN = T , and we
denote by—t the length of these tiny periods:
—t = t1 � t0 = t2 � t1, et cetera. Remem-
ber —t, because we will mention it frequently
in the discussion: —t is the small amount of
time for which we can solve the complicat-
ed mathematical equations, at least approxi-
mately. Now, all we have to do is solve New-
ton’s equations on the tiny time interval—t ...
One may think that this is not much easier
than solving them on T , but the beauty of
mathematics is that it makes a big difference
if we can assume that —t is small.

Let us examine how this may be done for
a single planetary orbit, for example that of
the Earth. When we speak of the system, in
this case, we mean the Sun, which we assume
to be fixed in space, and the Earth, which is
moving. The goal is to determine the motion
of the Earth over a small time step —t. The
nature of prediction is that we need Newton’s
equations, which tell how the system changes

Figure 2 Simulations of the outer solar system: Euler’s

method (left), ‘backward’ Euler (middle), Newton’s method

(right). The circles indicate the locations of the planets at

the end of the simulations.
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Figure 3 The method of Euler applied to the Earth orbit

from one time to the next, plus a precise de-
scription of the state of the system at some
initial time. This precise description is called
the initial condition. Remember this too.
Even though it seems innocuous enough, it
plays an important role at the end of the lec-
ture. For a planet, it turns out that its state is
fully described by: its location in space (rel-
ative to the sun in this case) and its velocity
vector. Recall that a velocity vector tells which
direction something is moving, and how fast.
For this lecture, all the mathematics that is
needed is that of vector arithmetic: A vector
is illustrated graphically by an arrow: the di-
rection the arrow points represents its direc-
tion, and its length represents its magnitude
(how fast, in the case of a velocity vector). An
important property of a vector is that we are
free to move it around in space, as long as we
don’t rotate it or magnify it. A second prop-
erty is that to add two vectors, we just attach
the tail of one to the head of the other (the
order doesn’t matter), and then draw a new
vector from the free tail to the free head.

We denote the initial location of the planet
by X0 and its initial velocity by V0. Togeth-
er these constitute the initial condition for a
planet. Stated another way, given the loca-
tion and velocity of the planet at time t0, we
want to determine its new location and new
velocity at time t1,—t units later. These states
are like snapshots, or frames in a motion pic-
ture. In Frame 0, the planet is located at X0

and has velocityV0. In Frame 1, it is located at
X1 and has velocityV1, and so forth. Our goal
is to compute Frame 1 using the information
in Frame 0.

There are hundreds if not thousands of
methods for doing this. We will consider
Methods A, B, and C above. Method A, the
hot one, was first proposed by Leonhard Eu-
ler, a great Swiss mathematician. It proceeds
as follows (Figure 3):
1. If there were no force acting on the planet,

then it would move in a straight line in the
direction of V0 for a time —t, and its new
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Figure 4 The ‘backward’ Euler method applied to the Earth

orbit

position would be X1 = X0 + —tV0. Euler
just uses this value for the new position.

2. If the planet were standing still, on the
other hand, the force acting on it would
be constant, inversely proportional to the
square of its distance from the sun, and
acting along the line between the planet
and the sun. Denote the force by F0, as it
is shown in the figure. The velocity is modi-
fied according to Newton’s laws as follows:
V1 = V0 +—tF0. Recall how to add vectors:
match head to tail and draw an arrow. We
take this as the new value of the velocity
at time t1.
Method B is also attributed to Euler, but it

is a bit more sophisticated (Figure 4). It is re-
ferred to as the ‘backward’ Euler method, for
reasons I do not wish to go into. In this case
we first pretend we know the position of the
planet at time X1. Knowing it, we can com-
pute the force F1 there, and given the force
we can compute the change in velocity vari-
able using the formula V1 = V0 + —tF1. In
other words, the velocity vector is updated
using the force at time t1. Now, knowing the
velocity we compute the position using the fi-
nal velocity instead of the initial one to get
X1 = X0 + —tV1. Of course, we didn’t know
X1 to begin with, so these two equations have
to be solved together. With a little luck one
can proceed by guessing X1, computing V1,
then computing a better estimate of X1, then
a better estimate of V1 and so on, until one
is satisfied that repeating this won’t improve
the solution any more. We say that X1 and
V1 are defined implicitly, and we also refer to
method B as the implicit Euler method. It was
really popularized by people like John Butch-
er, a New Zealand mathematician who just
last February was awarded the Van Wijngaar-
den Prize in this very hall.

The just-right Method C was first used by
Newton, see Figure 5. (These days, Method C
is referred to as the ‘sympletic Euler’ method.)
In this case, the position is updated assum-
ing the Sun is absent, X1 = X0 + —tV0, and
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Figure 5 The method of Newton applied to the Earth orbit

then the velocity is updated assuming the
planet is standing still at its new location:
V1 = V0 + —tF1. Curiously, it turns out that
this method satisfies Kepler’s law that equal
areas are swept out in equal times! And this
fact is related to its just-right behavior. New-
ton’s graphical proof of this fact is included in
the Principia.

Once we know how to solve Newton’s
equations for a time step of size —t, we can
compute the locations of the planets at time
t1. At this point we are back to our original
problem: the governing equations have not
changed, and we have a new initial condi-
tion. We then solve the equations again for
another time —t to get the locations of the
planets at time t2, and so on, until we get
to T . If the number of steps is very large
(and we will see that it must be), this process
could become rather tedious. Until the ear-
ly 1950s, we paid a room full of people to do
these computations; thereafter we developed
the very first computers that put the very first
people out of their jobs. The first computer in
the Netherlands was built under the leader-
ship of Adriaan van Wijngaarden who was one
of my predecessors in the Professorial Chair
of the Stichting voor Hoger Onderwijs in de
Toegepaste Wiskunde [11]. Van Wijngaarden
was the original head of the computing de-
partment at the Mathematisch Centrum, cur-
rently Centrum Wiskunde & Informatica and
my employer. Later he served as director of
the institute for many years.

Two limit cases
The astute reader may object: “But the force
and velocity are changing continuously during
the time step —t, so your answer is wrong!”
This is true, we have made an error, and error
too is the nature of prediction. However, we
expect the error to be smaller if the time step
is smaller. We can test this by computing one
period of Earth’s orbit, 365 days. If we take 12
time steps of size—t equal to one month, the
errors stack up and the orbit rapidly spirals
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away. This is successively improved using 52
time steps of one week and 365 time steps of
one day. If we take time steps of size—t equal
to one hour, the orbit is nearly closed (to vi-
sual inspection), even using Euler’s method.
However, the more steps we take, the more
work for the computer (or the people), and the
longer we have to wait for our answer. In prac-
tice —t is chosen as a compromise between
our desire for accuracy and our patience in
waiting for the answer.

Mathematical analysis is often concerned
with limits: what happens when some quan-
tity becomes very large or very small? Two
limits are of interest to prediction methods.
The first limit we have just illustrated: it is
the limit in which the length of the time inter-
val T is kept fixed (one year), while taking —t
smaller and smaller (at the same time taking
more and more steps). I refer to this as the
approximation limit, because the prediction
becomes ever more precise, closer and closer
to the exact solution. The approximation lim-
it belongs to the realm of Numerical Analysis,
the first half of the name of the Chair of Nu-
merical Analysis and Dynamical Systems. Nu-
merical analysts try to show how rapidly the
error decreases as we take two times as many
steps, half as large. Convergence is impor-
tant, but in practice computations are often
done with large time steps and on time inter-
vals much too long for the approximation lim-
it to apply. A meteorologist-colleague once
said: “You can always recognize the mathe-
maticians, because they explicitly state that
—t is a positive constant.”

There is a second limit of interest to math-
ematicians, and that is the limit where —t is
kept fixed but the number of steps becomes
large. For example, we think of repeating our
calculation with Euler’s method over and over
to create an infinite sequence of snapshots
of our solar system. We are interested in how
the solution behaves in this limit, do the plan-
ets spiral away as with method A, crash in-
to the sun as with method B, or follow nice
ellipses as with Newton’s method C? Ques-
tions of this nature refer to the stability of
the method and belong more generally to the
realm of mathematics called Dynamical Sys-
tems, the second half of the name of the Pro-
fessorial Chair. For fixed —t, the iterated nu-
merical process defines a so-called discrete
dynamical system. Questions pertaining to
the stability of numerical prediction methods
were studied in great detail by the previous
two occupants of this Chair: Pieter van der
Houwen and Jan Verwer. I had the very great
pleasure of working with both of them. In fact,

at least two other occupants of the Chair also
worked on discrete dynamical systems: Hans
Lauwerier, who wrote a popular book on frac-
tals [6], and Van Wijngaarden himself, who
proposed a discrete computer calculus, which
he suggested would be more appropriate for
computational modeling than the continuum
calculus used now [14].

... (and the prediction of nature)

At this point we have demonstrated the me-
chanical process of prediction. In most cases,
however, there is a theoretical catch, and that
is the question of predictability. To quote pi-
oneering quantum physicist Niels Bohr: “Pre-
diction is very difficult, especially if it is about
the future.”

It has been postulated that our fascina-
tion for weather stems from its unpredictabil-
ity: if one attempts to make use of the daily
weather report, one may occasionally be dis-
appointed. If one follows the multiple day
forecasts, it is even more likely that the inac-
curacy draws one’s attention. There seems to
be a problem with weather prediction. Af-
ter our foregoing discussion, one may ask,
do meteorologists who compute the weath-
er need to use a smaller time step? Are the
governing equations wrong? Or is the ini-
tial condition wrong? In fact, all of these are
sources of error: the models do not account
for all physical influences, the initial condi-
tion cannot be measured everywhere in the
atmosphere, and undoubtedly the step size
could be smaller. However, there is some-
thing else involved that causes the above ef-
fects to be grossly amplified: the governing
equations exhibit ‘chaos’, a subject of mathe-
matics that has been studied since the 1960s
and which gained widespread popular atten-
tion in the late 1980s with the publication of
several popular books, such as Chaos: Mak-
ing a New Science by James Gleick [4].

The essential idea of chaotic behavior is
that while the motion of the system remains
bounded, two different solutions, no matter
how close originally, grow apart at an expo-
nential rate. This means also that errors made
in computing the solution will grow exponen-
tially. The property holds generically for most
natural systems. It was studied in meteo-
rology by the mathematician Edward Lorenz.
Among the general public, the popular exam-
ple of the ‘butterfly effect’ is familiar, where-
by it is suggested that a butterfly flapping its
wings in Brazil can trigger a series of grow-
ing instabilities that eventually result in a tor-
nado in Texas. Now, while this is probably
rather exaggerated, the salient idea is that

small perturbations may lead to huge discrep-
ancies. Lorenz first studied this phenomenon
for the example of a system of equations de-
scribing circulating water in a heated box [7].
The warmed fluid rises, forcing the cooled flu-
id to descend, and a circular, overturning mo-
tion ensues. The state of the system is given
by three variables — call them X, Y and Z —
where X represents the intensity of the over-
turning, Y represents the temperature differ-
ence between the ascending and descending
fluids and Z represents the non-linearity of
the temperature profile.

Euler’s method for the Lorenz system looks
like this:

Xn+1 = Xn +—t(sYn � sXn),

Yn+1 = Yn +—t(rXn �XnZn � Yn),

Zn+1 = Zn +—t(XnYn � bZn).

The numbers r , b and s are parameters: con-
stant numbers chosen by Lorenz to be r = 28,
b = 8/3, and s = 10. The variablesX,Y andZ
change in time. We can think of them as the
coordinates of a point in three-dimensional
space. In that case, our prediction for X, Y
and Z is a sequence of such points, tracing
out a curve, just like one of the planets but
with a much more complex orbit. If we just
examine how the variable Z varies in time, it
seems unpredictable. Let us compare ten so-
lutions of Lorenz’s equations, each with a tiny
error in the initial condition, say, less than one
per mil. In Figure 6 (bottom) we initially ob-
serve no difference in the ten solutions; they
look like a single solution. Suddenly, after
a certain time has passed, they all diverge
completely. The predictability is lost. This di-
vergence occurs at an exponential rate, just
like the growth of bacteria populations, bank
savings, or radioactive decay. We can speak
of the half-life of a prediction. How long the
half-life is, actually depends on the current
conditions — a large high-pressure weather
pattern has a much longer half-life than a low-
pressure pattern. The implication of chaos is
that there is a limit or horizon to prediction —
errors are always present and may grow at an
exponential rate.

Earlier we looked at the solar system; it is
easy to think of the solar system as being pe-
riodic. The orbits of the planets seem to be
stationary. One might think we can predict
the state of the solar system forever. After all,
eclipses can be predicted down to the second
for thousands of years. In fact, the motion
of a single planet around the Sun would be
highly predictable. However, even the plan-
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Figure 6 Chaotic divergence of trajectories of the Lorenz

equations. Ten trajectories with small randomly perturbed

initial condition: trajectories in phase space (X�Z) (top),

time series for the variable Z , showing predictability up to

around time t = 12 (bottom).

etary system is chaotic, as soon as there are
three bodies involved. This was noted by Hen-
ri Poincaré in 1890 [10]. In a more recent pa-
per appearing in Nature, simulations of the
solar system on a time interval of five billion
years were carried out [5]. Small errors in the
solar system grow by a factor of ten every ten
million years. This means that the horizon
for solar system simulations is around 200
million years. As a result, these five billion
year simulations were not predictions in the
sense we have been talking about. On such
long time scales, the orbits of the planets look
anything but periodic, the orbital ellipses rock
back and forth, the orbital radii grow and de-
cay, sometimes the order of the planets as we
know them changes. For example, the orbit
of Venus becomes larger than that of Earth.
This will, among other things, be devastating
for mnemonics for remembering the order of
the planets, like ‘My Very Educated Mother
Just Served Us Nine Pizzas’ (already obsolete
since the demotion of Pluto). Children five bil-
lion years from now will have to think of new
ones.

As another example of chaos, let us look at
the climate simulations, such as those shown
in Figure 7, which were carried out by the Dutch
weather service KNMI in 2005 as part of the
Dutch Challenge Project [3]. In this study, the
global climate was simulated over 140 years
from 1940–2080. In total, 31 simulations are
shown, each with a minuscule disturbance of
the temperature in the initial condition — less
than one per mil. Shown here are the results
from the first month, January 1940, indicating

the predicted temperatures in de Bilt. There
is a 10�C temperature spread by the end of
the month!

Seeing this, one may wonder why anyone
even bothers doing climate simulations in the
presence of chaos. If we cannot trust the
weather forecast two weeks ahead of time,
what hope is there of predicting the whole cli-
mate 140 years in advance? The answer is,
of course, that climate scientists are not in-
terested in predicting the weather. That is,
they are not interested in precisely predicting
the temperature in Amsterdam on a Thursday
in 2080, but in other quantities, such as for
example the mean yearly temperature in Ams-
terdam in the period from 2070–2080, or the
relative increase or decrease in rainfall for the
summer months in the Netherlands between
2010 and 2080. Our premise is that such
quantities are predictable, even if the precise
state of the atmosphere on a given date can-
not be specified.

Let us see how that might be. We return
to the Lorenz system, and instead of show-
ing the solution Z, let us just keep track of
which values ofZ are most likely to occur. We
divide the interval from 0 to 60 up into 100
equal boxes, and with each time step of our
Euler method we determine in which box the
solution finds itself and count how many time
steps fall within each of the 100 boxes. In this
way we obtain a statistical distribution over
all the values of Z, such as the one shown in
Figure 8. The key point is that even though
two solutions of Lorenz diverge exponential-
ly, on a long interval and from a distance they
all look more or less the same. In particular,
for any initial condition this same statistical
distribution will result. And now suppose the
thing we want to know about the ‘climate’ of
the Lorenz system depends only on the distri-
bution of Z. For example, suppose we want
to know the mean value and standard devi-
ation of Z. Then even though the system is
chaotic, this quantity is predictable. In this
case, and for the Lorenz problem, it doesn’t
even depend on the initial condition!
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Figure 7 Ensemble climate simulation for the Dutch Chal-

lenge Project
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Figure 8 Despite the fact that the trajectories of the

Lorenz equations (or the time series of Z) are unpre-

dictable, the statistical distribution of Z over a long time

simulation is independent of the initial condition.

Predictions of the first and second kind
So we see that there exist quantities that can
and those that cannot be predicted, even for
the simple Lorenz system. In between are
quantities that can be predicted somewhat
accurately for longer times than the weath-
er. What about something as complex as the
climate? In other work, Lorenz proposes two
concepts of predictability in climate, which he
refers to as climate predictions of the first and
second kind [8].

Climate prediction of the first kind is simi-
lar to what we have already seen for the plan-
ets, except that one must determine which
quantities are predictable on the time frame
of interest, and then start from an initial con-
dition that is consistent with the current cli-
mate. Probably multiple scenarios must be
run, because the ‘current climate’ may cor-
respond to many very different initial condi-
tions.

Prediction of the second kind can be un-
derstood using the Lorenz example again.
Suppose that instead of r = 28 we double
this parameter and take r = 56 (for example,
let us pretend that r represents the amount of
CO2 in the atmosphere — it doesn’t, but just
pretend), and we are interested in how a dou-
bling of CO2 will change the climate. Then
we can repeat the simulation, using r = 56
this time, and compare the distributions of
the variable Z. As shown in Figure 9, the dis-
tribution is changed. In this way we can study
how the climate adapts to a change in some
parameter such as CO2 level. This is Lorenz’s
prediction of the second kind. With this ap-
proach we can predict how the statistics of
climate — defined as the typical weather pat-
terns — will change due to a change in param-
eters.

Climate sampling versus climate prediction
The Intergovernmental Panel on Climate
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Figure 9 Comparison of the statistical distributions of the

variable Z in the Lorenz equations, for r = 28 (dark) and

r = 56 (light). This illustrates climate prediction of the

second kind, specifically, how the ‘climate’ of the Lorenz

attractor changes as the parameter r is doubled.

Change (the IPCC) has included in its reports
climate simulations analogous to those just
described in the simple situation of second
kind prediction of Lorenz’s equation. Roughly
speaking, the IPCC fixes a value of CO2 consis-
tent with currently observed values and per-
forms a long simulation, just as we did with
the Lorenz model, to reach statistics that are
stationary (i.e., unchanging with longer simu-
lation). Subsequently they double the value
of CO2, and repeat the simulation to conver-
gence of the statistics. Then these statistics
are compared to make a prediction about the
effects of CO2 emissions. The differences be-
tween these statistical data are then used to
extrapolate the present climate to a future one
where CO2 levels are doubled.

Kevin Trenberth is head of the climate anal-
ysis section of the National Center for Atmo-
spheric Research in the USA and a lead author
of the IPCC reports in 1995, 2001 and 2007.
Trenberth submitted a letter to the weblog of
Nature in 2007, which is very interesting in our
context [12]. Just to make Trenberth’s opinion
on CO2 emissions clear, I start with the con-
clusion of his letter. He writes:

“A consensus has emerged that ‘warming
of the climate system is unequivocal’ and
the science is convincing that humans are
the cause. Hence mitigation of the problem:
stopping or slowing greenhouse gas emis-
sions into the atmosphere is essential. The
science is clear in this respect.”

And further:
“We will adapt to climate change. The

question is whether it will be planned or not?
How disruptive and how much loss of life will
there be because we did not adequately plan
for the climate changes that are already oc-
curring?”

Nonetheless, Trenberth’s letter states:
“In fact there are no predictions by IPCC

at all. And there never have been. The IPCC
instead proffers ‘what if’ projections of future
climate that correspond to certain emissions
scenarios ... They are intended to cover a
range of possible self-consistent ‘story lines’
that then provide decision makers with infor-
mation about which paths might be more de-
sirable.

Even if there were, the projections are
based on model results that provide differ-
ences of the future climate relative to that to-
day. None of the models used by IPCC are ini-
tialized to the observed state and none of the
climate states in the models correspond even
remotely to the current observed climate. In
particular, the state of the oceans, sea ice,
and soil moisture has no relationship to the
observed state at any recent time in any of
the IPCC models. There is neither an El Niño
sequence nor any Pacific Decadal Oscillation
that replicates the recent past; yet these are
critical modes of variability that affect Pacific
rim countries and beyond ... I postulate that
regional climate change is impossible to deal
with properly unless the models are initial-
ized.

The current projection method works to the
extent it does because it utilizes differences
from one time to another and the main model
bias and systematic errors are thereby sub-
tracted out. This assumes linearity ...”

Hence, climate simulations, as employed
by the IPCC, should not be confused with cli-
mate predictions — certainly not those of the
first kind as defined by Lorenz. But in fact,
there is also an important tacit assumption
that goes into the second kind climate predic-
tion, which almost certainly does not hold for
the real climate: that is, that the results of a
long simulation do not depend on the initial
condition chosen. Let us demonstrate this,
again using the Lorenz system.

We have seen the statistical distribution
for the variableZ for the original choice r = 28
of Lorenz. This distribution is absolutely in-
dependent of the initial condition — mathe-
matically speaking the system has a global
attractor. Now let us choose r = 24.1, about
15% smaller. In this case, the character of
the solution changes considerably. Two solu-
tions are shown in Figure 10. For most initial
conditions the chaotic behavior persists, yet
for another class of initial conditions (such
as the light one shown in the figure), the be-
havior is highly predictable. For this value of
r , the statistical distributions also depend on
the initial condition!

The IPCC takes care not to refer to its
climate simulations as predictions. They
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speak of projections or scenarios, ‘consistent
and plausible’ realizations of future climates.
Nonetheless the simulation results are fre-
quently misused by others to justify decisions
in the face of the current warming; for exam-
ple, to determine the need for higher dikes
in the Netherlands. Trenberth warns that the
IPCC simulations should not be used to pre-
dict regional change. In other words he says
that whereas the simulations may give a plau-
sible indication of the degree of global annual
mean temperature increase, whether, say, the
Netherlands regionally will be warmer or cool-
er, wetter or dryer, can not be deduced from
the IPCC simulations. Trenberth continues:

“However, the science is not done because
we do not have reliable or regional predictions
of climate. But we need them. Indeed it is
an imperative! So the science is just begin-
ning. Beginning, that is, to face up to the
challenge of building a climate information
system that tracks the current climate and the
agents of change, that initializes models and
makes predictions, and that provides useful
climate information on many time scales re-
gionally and tailored to many sectoral needs.

Of course one can initialize a climate mod-
el, but a biased model will immediately drift
back to the model climate and the predict-
ed trends will then be wrong. Therefore the
problem of overcoming this shortcoming, and
facing up to initializing climate models means
not only obtaining sufficient reliable observa-
tions of all aspects of the climate system, but
also overcoming model biases.”

As he notes here, one challenge is to over-
come model biases. This brings us back to
the examples of the Goldilocks Methods A, B
and C for the solar system at the beginning
of the lecture, and the relation of all this with
the research of my group at CWI. There we saw
that different methods behaved differently in
the dynamical systems limit of fixed —t and
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Figure 11 Mean stream functions and corresponding scat-

ter plots of potential vorticity (inset) for long time simu-

lations with discretizations due to Arakawa that conserve

energy and enstrophy (left), energy only (middle) and en-

strophy only (right). The ‘prevailing winds’, which blow

along the contours of the stream function surfaces, strong-

ly depend on the method used.

T tending to infinity. Overcoming model bias
means that the methods have to be designed
such that their statistics agree with those of
the real solar system.

In the same way that the just-right Method
C retained the equal areas property of Kepler,
for an atmospheric model one can construct
numerical methods that respect other natu-
ral laws like energy or something exotic like
enstrophy — the mean variance of the rota-
tional component of the wind. With PhD stu-
dent Svetlana Dubinkina we compared three
methods that were identical besides conserv-
ing energy, enstrophy or both [2]. Using these
we computed the average wind field from long
simulations, in other words, the ‘prevailing
winds’. We found that the methods gave com-
pletely different results, as illustrated in Fig-
ure 11. The method that conserved energy
predicted no prevailing wind at all — all fluc-

tuations were equally likely. The method that
obeyed only the enstrophy conservation law
predicted a weaker prevailing wind with no
mean rotational component, and the method
that conserved both gave stronger winds that
were presumably more realistic.

Closing

From the first part of the lecture, there are
three key elements to the nature of prediction:
(1) given a mathematical rule that tells how
the state of a system changes from one time
to the next, and an initial condition describing
the original state, we attempt to compute the
state at a later time T ; (2) the prediction is
an approximation, by definition it is in error;
(3) chaotic growth of error effectively places a
horizon on predictability.

Nonetheless, certain statistical quantities
that are insensitive to this error growth are
predictable on long times, but only using nu-
merical methods that accurately reproduce
the climate statistical distribution. To con-
clude, I would like to outline where it appears
to me, based on the discussion presented
here, that progress can be made in climate
prediction.

For effective second kind climate predic-
tion, two ingredients are necessary:
1. For the reference simulation, the param-

eters must be consistent with the current
climate, and the model able to reproduce

the current climate, at least for some con-
sistent class of initial conditions. This re-
moves the assumption of linearity. In the
words of Trenberth, the models must be
initialized.

2. We must establish that the climate attrac-
tor is a global one such that initial con-
ditions are irrelevant, or else explore and
categorize the basins of attraction. Other-
wise, the projected (future) climate cannot
be initialized.
Alternatively, to predict climate in the first

kind sense, which seems to me vastly prefer-
able, a whole program of research must be
carried out, including development of mea-
sures of accuracy of statistical quantities such
as averages and time correlations, an anal-
ysis of which such quantities may be com-
puted accurately on what time frames, an un-
derstanding of how that accuracy depends on
the numerical discretization parameters, and
the development of new computational tech-
niques for statistically consistent parameter-
ization of unresolved effects or other means
of correction of statistical bias introduced by
the numerics. There is much work to be done.

The nature of prediction is uncertainty, but
the prediction of nature may well succumb
to the efforts of science. Lao Tzu’s proverb
‘Those who have knowledge, don’t predict.
Those who predict, don’t have knowledge’,
holds only as a truism. k
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